Affiliation:
1. Research Institute for Textile and Clothing (FTB), Hochschule Niederrhein – University of Applied Sciences, Mönchengladbach, Germany
2. Centexbel, Gent, Belgium
3. Junkers & Müllers GmbH, Mönchengladbach, Germany
Abstract
Three-dimensional printing has already been shown to be beneficial to the fabrication of custom-fit and functional products in different industry sectors such as orthopaedics, implantology and dental technology. Especially in personal protective equipment and sportswear, three-dimensional printing offers opportunities to produce functional garments fitted to body contours by directly printing protective and (posture) supporting elements on textiles. In this article, different flexible thermoplastic elastomers, namely, thermoplastic polyurethanes and thermoplastic styrene block copolymers with a Shore hardness range of 67A–86A are tested as suitable printing materials by means of extrusion-based fused deposition modelling. For this, adhesion force, abrasion and wash resistance tests are conducted using various knitted and woven workwear and sportswear fabrics primarily made of cotton, polyester or aramid as textile substrates. Due to polar interactions between thermoplastic polyurethane and textile substrates, excellent adhesion and high fastness to washing is observed. While fused-deposition-modelling-printed polyether-based thermoplastic polyurethane polymers keep their abrasion–resistant properties, polyester-based thermoplastic polyurethanes are more prone to hydrolysis and can be partially degraded if presence of moisture cannot be excluded during polymer processing and printing. Thermoplastic styrene compounds generally exhibit lower adhesion and abrasion resistance, but these properties can be sufficient depending on the requirements of a particular application. Soft thermoplastic styrene filaments can be processed down to a Shore hardness of 70A resulting in three-dimensional printed parts with good quality and comfortable soft-touch surface. Finally, three demonstrator case studies are presented covering the entire process to realize the customized and three-dimensional printed textile. This encompasses product development and fabrication of a textile integrated custom-fit back protector and knee protector as well as customized functionalization of a technical interior textile for improved acoustic comfort. In the future, printing material modifications by compounding processes have to be taken into account for optimized functional performance.
Subject
General Materials Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献