Computational simulation of the ballistic impact of fabrics using hybrid shell element

Author:

Qian Xiuyang1ORCID,Zhou Yushan1,Cai Liya2,Pei Feng1,Li Xu1

Affiliation:

1. GAC Automotive Research & Development Center, Guangzhou, China

2. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, China

Abstract

This paper investigates on a computational simulation of Twaron® fabric against ballistic impact. It proposed a hybrid shell element model considering the strain-rate-sensitive failure criterion. This model innovatively provided a resolution of the yarn level to better capture the unique properties of the woven fabric, such as yarn crimp, sliding contact between yarns, stress transmission on yarns and yarn broken. The fabric is modeled using a hybrid shell element analysis approach aim of reducing the complexity and computational expense while ensuring accuracy. The response characteristics of fabric under high velocity ballistic impact are studied by applying a 3D finite element program DYNA3D in this paper and the experimental investigation had been taken by Shim et al. According to the computational and experimental results, transverse deflection distribution and stress transmission of fabrics are presented. The ballistic limit, energy absorption, remaining velocity are calculated by simulation models and compared with the experimental results. This approach is also validated by comparing it against a 2D uniform shell model and a 3D interlacing shell model. The results show that the hybrid model can accurately reflect the buckling and fluctuation behavior of fabrics and has a relatively few computational consumption at the same time.

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3