Fabrication and properties of far-infrared functional bandage

Author:

Zhu Hui1,Xiang Xuexue2ORCID,Gao Jing2,Wang Lu2

Affiliation:

1. Benecke Changshun Auto Trim(Zhangjiagang)Co., Ltd. Suzhou, China

2. College of Textiles, Donghua University, Shanghai, China

Abstract

In order to develop far-infrared functional bandage products with excellent performance, tourmaline powder was selected as the far-infrared radiation material and the far-infrared functional finishing of polyester fabric was carried out by the dip-rolling process. Taking the radiation temperature rise value as the index to explore the optimal process conditions for the far-infrared performance, then the microstructure, mechanical properties, comfort performance, and far-infrared radiation performance of the far-infrared bandage were further investigated, respectively. Based on the results, the optimum process conditions for heating bandage have been proposed (tourmaline powder mass fraction, 5%; polyacrylate mass fraction, 25%; impregnation temperature, 40°; impregnation time, 15 min, baking temperature, 140° and baking time, 1 min). After being treated, the mechanical properties of the bandage enhanced, the air permeability decreased, and the moisture permeability increased significantly, indicating its comfort and is suitable for practical application. It was measured that the far-infrared ray emission value of the far-infrared functional bandage was 0.89, which was greater than the 0.80 required by CAS 115-2005 “Health Functional Textiles” standard, proving that the attachment of tourmaline made the far-infrared radiation performance of the bandage significantly improved. These attractive features of the far-infrared functional bandages promise them great potential in far-infrared health care applications.

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3