Improvement in the strength of concrete reinforced with agriculture fibers: Assessment on mechanical properties and microstructure analysis

Author:

Ahmad Jawad1ORCID,Mohammed Jebur Yasir2,Tayyab Naqash Muhammad3ORCID,Sheraz Muhammad4,Hakamy Ahmed5,Farouk Deifalla Ahmed6

Affiliation:

1. Swedish College of Engineering and Technology, Taxila, Punjab, Pakistan

2. Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, Babylon, Iraq

3. Civil Engineering Department, Islamic University of Madinah, Madinah, Saudi Arabia

4. Central South University China, Changsha, China

5. Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia

6. Future University in Egypt, New Cairo, Cairo, Egypt

Abstract

Concrete is weak in tension, causing brittle failure without warning. Fiber is one of the simplest techniques to increase tensile strain. Several kinds of fibers (synthetic) are available such as steel fiber, glass fiber, and carbon fiber. However, these fibers are expensive and cannot be easily accessible. Researchers use agricultural fiber in concrete instead of synthetic fibers to offset this deficiency. Although, several studies have shown that agricultural fiber may be utilized to increase concrete tensile strength. However, a details review is required which combines all relevant information and the reader can evaluate the benefits of agricultural fiber. Therefore, this review focus on a comprehensive and up-to-date overview of the impact of agricultural fiber on concrete slump flow, mechanical quality, and durability. Furthermore, scanning electronic microscopy, enhancement methods, and agricultural fiber-reinforced concrete (AFRC) applications are also reviewed. Five different types of agricultural fiber including coconut, jute, banana, rice straw, and hemp fibers were selected. According to the findings, agricultural fiber increased concrete’s mechanical and durability qualities while comparably decreasing the slump. The optimum dose is essential as the higher dose adversely affects mechanical performance. The typical optimum amount varies from 1% to 2% by weight/volume of the binder. Among various types of agricultural fiber, coconut fiber is super performance. Less research is carried out on hemp, straw ash, and banana fibers than on coconut and jute fibers.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3