High-temperature axial stress evolution mechanism of polyacrylonitrile-based carbon fiber

Author:

Wang Yu1ORCID,Ye Lian-Wei1,Ruan Ru-yu1,Gao Ai-Jun1,Tong Yuan-Jian12

Affiliation:

1. Beijing University of Chemical Technology, Beijing, China

2. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China

Abstract

Temperature and stretching are important factors in the high-temperature treatment of carbon fiber. The axial stress during carbon-fiber high-temperature treatment affects its ability to stretch. The high-temperature axial stress evolution mechanism of polyacrylonitrile-based carbon fiber was studied through in situ tension tests, Raman spectroscopy, X-ray diffractometry, elemental analysis, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, thermal expansion coefficient tests, and density methods. The high-temperature axial stress evolution of polyacrylonitrile-based carbon fiber involved three stages: rapid increase, rapid decrease, and relaxation. The highest stress and relaxation temperatures of the polyacrylonitrile-based carbon fiber were 1600°C and 1950°C, respectively. The main factors that affected the fiber axial stress included carbon-structure rearrangement and the effect of thermal expansion and cold shrinkage on fiber length. During the first stage ( T < 1600°C), carbon-structure rearrangement after nitrogen atom removal increased the fiber axial stress. In the second stage (1600 ⩽  T ⩽ 1950°C), the difference in the thermal expansion of fibers that entered the graphite furnace and the cold shrinkage of fibers that exited the graphite furnace increased gradually, which resulted in a decrease in fiber axial stress by up to 1950°C, where the fiber relaxed and the third stage ( T > 1950°C) began. The difference between expansion and shrinkage increased significantly, which increased fiber relaxation. Carbon fibers with fewer nitrogen atoms and more regular structures had a lower axial stress during high-temperature treatment, but the trend and characteristic temperature remained unchanged. The corresponding fiber high-temperature maximum stretching ratio and axial stress showed opposite trends below 1950°C. The ability to stretch the carbon fiber increased above 1950°C, which differed from the axial stress relaxation.

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3