Preparation and Characterization of magnetic PLA/Fe3O4-g-PLLA composite melt blown nonwoven fabric for air filtration

Author:

Sun Hui1,Peng Siwei1,Wang Mingjun1,Zhu Feichao1,Bhat Gajanan2,Yu Bin1ORCID

Affiliation:

1. College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, China

2. Department of Textiles, Merchandising & Interiors, University of Georgia, Athens, GA, USA

Abstract

A kind of magnetic poly (lactic acid) (PLA) melt blown nonwoven fabric (MB) was fabricated by the introduction of ferroferric oxide (Fe3O4) nanoparticles to improve its air filtration performances. In view of the poor compatibility of two components, the poly (L-lactic acid) (PLLA) molecular chains was firstly grafted onto the Fe3O4 nanoparticles surface via the ring opening polymerization (ROP). Then, PLA/Fe3O4-g-PLLA composite masterbatches with different mass ratios were prepared by melt-blending method and processed into the corresponding composite MB. The structures and performances of PLA/Fe3O4-g-PLLA composite masterbatches and their MB were investigated. The results showed that the addition of Fe3O4-g-PLLA nanohybrids hardly influenced the glass transition, cold crystallization and melting behaviors of the composite masterbatches. Though the melt fluidity of the composite masterbatches reduced with the Fe3O4-g-PLLA content increasing, the composite masterbatches still could present the appropriate processability in the range of 210°C to 230°C. Fe3O4-g-PLLA could be uniformly dispersed in PLA matrix and had a good interfacial compatibility with the matrix. Compared with pure PLA MB, the fiber surface of the composite MB became slightly rough, the pore size and distribution of the fiber web increased. The addition of Fe3O4-g-PLLA endowed PLA MB with magnetism. With the increasing of Fe3O4-g-PLLA content, the air permeability of the composite MB was improved and their filtration resistance obviously reduced. When the content of Fe3O4-g-PLLA was 0.5 wt%, the filtration efficiency of the composite MB reached the maximum. Moreover, the composite MB have higher longitudinal tensile strength and elongation at break than those of pure PLA MB.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3