A comparative study of electrospun polyvinylidene fluoride and poly(vinylidenefluoride-co-trifluoroethylene) fiber webs: Mechanical properties, crystallinity, and piezoelectric properties

Author:

Zhang Wenxin1,Zaarour Bilal12ORCID,Zhu Lei1,Huang Chen1,Xu Bugao3,Jin Xiangyu1

Affiliation:

1. Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai, China

2. Department of Textile Industries Mechanical Engineering and their Techniques, Faculty of Mechanical and Electrical Engineering, Damascus University, Damascus, Syria

3. College of Merchandising and Digital Retailing, University of North Texas, Denton, TX, USA

Abstract

Energy scavenging has been attracting the consideration of researchers in recent years. In this study, the fabrication and characterization of electrospun randomly oriented and aligned grooved polyvinylidene fluoride (PVDF) and poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) fiber webs are studied. The fibers are generated with comparable diameters and the webs which are used as an active layer to directly make a piezoelectric nanogenerator are fabricated with the same thickness for accurate comparison. The results show that PVDF-TrFE fiber webs have better mechanical properties, crystallinity, and piezoelectric properties than PVDF fiber webs. Furthermore, the piezoelectric nanogenerator based on PVDF-TrFE fiber webs has higher electrical outputs than piezoelectric nanogenerator based on PVDF fiber webs owing to its high β phase content (F(β)). Moreover, the electrical outputs of the piezoelectric nanogenerator based on aligned fiber webs are higher than those based on randomly oriented fiber webs due to the increase in the friction area. We believe that our work can be served as a good reference for the comparison between the mechanical, physicochemical, and piezoelectric properties of PVDF and PVDF-TrFE fiber webs generated via electrospinning.

Funder

national natural science foundation of china

shanghai municipal education commission

shanghai educational development foundation

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3