Affiliation:
1. Department of Mechanics Hangzhou, Zhejiang CHINA
Abstract
The equations of averaged momentum, turbulence kinetic energy, turbulence dissipation rate with the additional term of the fibers, and the equation of probability distribution function for mean fiber orientation are derived and solved numerically for fiber suspension flowing in a turbulent boundary layer. The mathematical model and numerical code are verified by comparing the numerical results with the experimental ones in a turbulent channel flow. The effects of Reynolds number, fiber concentration and fiber aspect-ratio on the mean velocity profile, turbulent kinetic energy, Reynolds stress, turbulent dissipation rate and eddy viscosity coefficient are analyzed. The results show that the velocity profiles become full, and the turbulent kinetic energy, Reynolds stress and eddy viscosity coefficient increase, while turbulent dissipation rate decreases, as the Reynolds number, fiber concentration and fiber aspect-ratio increase. The effect of the fiber aspect-ratio on the turbulent properties is larger than that of the Reynolds number, but smaller than that of the fiber concentration in the range of parameters considered in this paper.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献