Two-Scale Modeling Approach to Predict Permeability of Fibrous Media

Author:

Jaganathan Sudhakar1,Tafreshi Hooman V.2,Pourdeyhimi Behnam1

Affiliation:

1. Nonwovens Cooperative Research Center NC State University, Raleigh, North Carolina USA

2. Mechanical Engineering Department Virginia Commonwealth University, Richmond, Virginia USA

Abstract

We previously demonstrated how one can develop a 3–D geometry to model the fibrous microstructure of a nonwoven fiberweb and use it to simulate its permeability at fiber level [1–6]. Developing 3–D models of most nonwoven fabrics (bonded fiberwebs), however, is cumbersome, as in the case of hydroentangled fabrics, for instance. In such cases, microscopic techniques are often used to generate 3–D images of the media's microstructures. Nevertheless, whether the microstructure is modeled or obtained from 3–D imaging, extensive computational resources are required to use them in fluid flow simulations [7]. To circumvent this problem, a two-scale modeling approach is proposed here that allows us to simulate the entire thickness of a commercial fabric/filter on a personal computer. In particular, the microscale permeability of a hydroentangled nonwoven is computed using 3–D reconstructed microstructures obtained from Digital Volumetric Imaging (DVI). The resulting microstructural permeability tensors are then used in a macroscale porous model to simulate the flow through the material's thickness and the calculation of its overall permeability.

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3