Particulate matter properties and health effects: consistency of epidemiological and toxicological studies

Author:

Schwarze P E1,Øvrevik J,Låg M,Refsnes M,Nafstad P,Hetland R B,Dybing E2

Affiliation:

1. Norwegian Institute of Public Health, POB4404 Nydalen, N-0403 Oslo, Norway,

2. Norwegian Institute of Public Health, Oslo, Norway

Abstract

Identifying the ambient particulate matter (PM) fractions or constituents, critically involved in eliciting adverse health effects, is crucial to the implementation of more cost-efficient abatement strategies to improve air quality. This review focuses on the importance of different particle properties for PM-induced effects, and whether there is consistency in the results from epidemiological and experimental studies. An evident problem for such comparisons is that epidemiological and experimental data on the effects of specific components of ambient PM are limited. Despite this, some conclusions can be drawn. With respect to the importance of the PM size-fractions, experimental and epidemiological studies are somewhat conflicting, but there seems to be a certain consistency in that the coarse fraction (PM10-2.5) has an effect that should not be neglected. Better exposure characterization may improve the consistency between the results from experimental and epidemiological studies, in particular for ultrafine particles. Experimental data indicate that surface area is an important metric, but composition may play an even greater role in eliciting effects. The consistency between epidemiological and experimental findings for specific PM-components appears most convincing for metals, which seem to be important for the development of both pulmonary and cardiovascular disease. Metals may also be involved in PM-induced allergic sensitization, but the epidemiological evidence for this is scarce. Soluble organic compounds appear to be implicated in PM-induced allergy and cancer, but the data from epidemiological studies are insufficient for any conclusions. The present review suggests that there may be a need for improvements in research designs. In particular, there is a need for better exposure assessments in epidemiological investigations, whereas experimental data would benefit from an improved comparability of studies. Combined experimental and epidemiological investigations may also help answer some of the unresolved issues.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3