Affiliation:
1. Department of Psychology, University of California, Davis
Abstract
It is common practice in correlational or quasiexperimental studies to use statistical control to remove confounding effects from a regression coefficient. Controlling for relevant confounders can debias the estimated causal effect of a predictor on an outcome; that is, it can bring the estimated regression coefficient closer to the value of the true causal effect. But statistical control works only under ideal circumstances. When the selected control variables are inappropriate, controlling can result in estimates that are more biased than uncontrolled estimates. Despite the ubiquity of statistical control in published regression analyses and the consequences of controlling for inappropriate third variables, the selection of control variables is rarely explicitly justified in print. We argue that to carefully select appropriate control variables, researchers must propose and defend a causal structure that includes the outcome, predictors, and plausible confounders. We underscore the importance of causality when selecting control variables by demonstrating how regression coefficients are affected by controlling for appropriate and inappropriate variables. Finally, we provide practical recommendations for applied researchers who wish to use statistical control.
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献