Investigation on the dry sliding friction and wear properties of Fe-ZrO2 composite

Author:

Jha Pushkar1ORCID,Sinha DK2,Singh Sudesh34,Kumar Devendra5

Affiliation:

1. School of Mechanical Engineering, KIIT Deemed to be University, Bhubaneswar, India

2. Department of Mechanical Engineering, Program of Manufacturing Engineering, Adama Science & Technology University, Adama, Ethiopia

3. Department of Mechanical Engineering, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India

4. State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China

5. Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, India

Abstract

The present work investigated the wear behaviour of powder metallurgy-processed ZrO2 (10 wt.%) reinforced Fe-based metal matrix composite under dry sliding conditions. The friction and wear properties were evaluated under varying loads and sliding speeds ranging from 5 to 10 N, and 0.75 to 1.25 m/s, respectively. The wear tests were performed against a counter face of EN31 steel (HRC 60) employing pin-on-disc tribometer under room temperature. Microstructural examination of the composite by field-emission scanning electron microscopy (FE-SEM), equipped with energy dispersive spectroscopy (EDS), displayed the presence as well as a homogeneous dispersion of reinforcement phase into the matrix. At a particular load and sliding speed, transition behaviour was observed in the coefficient of friction, whereas wear rate increased with increasing load and sliding speed. The analysis of worn surface indicated that the adhesive wear was dominant at relatively high operating conditions, while abrasive wear remained operative at lower load and sliding speed.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3