Estimation of surface quality for turning operations using machine learning approach

Author:

Dewangan Avinash1ORCID,Neigapula Venkata Swamy Naidu1,Soni Dheeraj Lal1ORCID,Vaidya Shailesh1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Raipur, Chhattisgarh, India

Abstract

The present article examines the effects of machining parameters on machined surfaces to determine optimum turning parameters for AISI-316 under dry machining environment. L27-OA with different levels of Cutting Speed (CS), Feed Rate (FR) and Depth-of-Cut (DOC) is used for experimentation. Surface Roughness (Ra) and Material Removal Rate (MRR) are considered as the response parameters. Among three Machine Learning (ML) models viz. Support Vector Regression (SVR), Gaussian Process Regression (GPR) and Gradient Boosting Regression (GBR), GBR yielded the best results, with significantly higher R2 scores and lower RMSE values. An integration of GBR-PSO algorithms is used to determine 50 sets of, Pareto solutions and desirability analysis rendered the most suitable input parameter values as 111.66 m/min for CS, 0.15 mm/rev for FR and 1.23 mm DOC. At validation stage, Ra and MRR predicted by ML have a nominal difference of 15.19% and 0.115% compared to measured values.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3