The effect of temperature on the transfer layer of an aluminium alloy on tool steel and the effect of CrN coating

Author:

Kalin Mitjan1,Jerina Jure12,Sharma Sandan Kumar13,Kovač Janez4

Affiliation:

1. Laboratory for Tribology and Interface Nanotechnology, University of Ljubljana, Lajubljana, Slovenia

2. Pladent d.o.o., Lajubljana, Slovenia

3. Department of Metallurgical and Materials Engineering, Indian Institute of Technology (IIT) Patna, Patna, India

4. Department of Surface Engineering, Jožef Stefan Institute, Lajubljana, Slovenia

Abstract

It is essential to explore temperature's crucial role while unveiling the intricacies of tribological interplay in CrN-coated steel-alloy systems. In the present study, tribological potential of CrN-coated hot-work tool steel was investigated under unidirectional single-pass sliding wear conditions. The sliding wear tests were performed at different temperatures (i.e., 20 °C, 100 °C, 200 °C, 300 °C, 400 °C and 500 °C) for the different sliding distances between 2 mm and 68 mm to explore the effect of temperature on the initiation and evolution of the transfer of an aluminium alloy (EN AW-6060). The effect was studied in terms of the contact area of the aluminium alloy and the volume transferred to the surface of the CrN. In addition, the structure of the wear trace and the equivalent friction coefficient were monitored with respect to the sliding distance and the temperature. The results show the strong dependency of the tribological potential of the CrN coating and the aluminium alloy on the temperature but show insignificant dependency on the sliding distance. When sliding up to 200 °C, the transfer was found to be dependent on the surface roughness of the coating, while strong adhesion led to the aluminium alloy's transfer during sliding at higher temperatures, that is, above 300 °C. At 500 °C, the CrN coating formed a self-protective Cr2O3 oxide that reduced the adhesive transfer of the alloy to the CrN compared to that at 200 °C–300 °C.

Publisher

SAGE Publications

Reference36 articles.

1. Extrusion

2. A study of die failure mechanisms in aluminum extrusion

3. Tribological investigation on friction and wear behaviour of coatings for hot sheet metal forming

4. Hansen PH. Analysis of wear distribution in forging dies, Publication no. MM. 91.06. PhD thesis, Technical University of Denmark, Denmark, 1990.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3