Affiliation:
1. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Abstract
Savonius turbines have been the subject of various wind energy projects due to their good starting characteristics, easy installation, and independency of wind direction. However, the Savonius rotor suffers from low aerodynamic performance, which is mainly due to the adverse torque of the returning blade. A recently introduced design suggests using pivoted blades for the rotor to eliminate the negative torque of the returning blade. In this study, the aerodynamic performance of the newly proposed turbine has been investigated experimentally and numerically. The experimental measurements are performed in a subsonic open-jet type wind tunnel facility. The numerical simulations are performed using ANSYS-Fluent commercial software, by making use of the multiple reference frame model. The effects of the number of blades (3-, 4-, and 6-bladed) on the torque and power coefficients are examined in details, at several Reynolds numbers. Results show that the new rotor has no negative torque in one complete revolution and that the 3-bladed rotor has the best aerodynamic performance, in a manner that, it reaches a maximum power coefficient of 0.21 at TSR = 0.5. Although increasing the number of blades decreases the output torque oscillations, it also decreases the average power coefficient of the rotor. Results show that Reynolds number does not have a significant effect on the average power coefficient of the rotor in the studied range of 7.7 × 104 ≤ Re ≤ 1.2 × 105.
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献