Affiliation:
1. School of Mechatronics and Information Engineering, China University of Mining and Technology (Beijing), Beijing, China
Abstract
A compressor map is usually represented by a limited number of feature points to speculate the entire operating range. Also, accurate compressor map models can be obtained quickly by using the appropriate methods. In this paper, 9351FA gas turbine is used as the research object, and a set of targeted compressor map speculation scheme is proposed. At 15 data points, high-precision compressor maps are obtained based on BP neural network, and this method is suitable for a large number of data points. At 6 data points, compressor maps are obtained based on the parameter estimation method, and this method is suitable for a small number of data points. The mean square deviation of the compressor map obtained by the neural network is about 0.002, while the minimum mean square deviation of the results of the parameter estimation method is 0.026 and the maximum mean square deviation is 0.088. Since the corrected speed line of 106.4 is almost vertical, the maximum error mean squared deviation and the maximum standard deviation occur on this line. Both methods are suitable for different sample sizes, and the speculated compressor maps are more reliable. The combination of the two methods can provide a set of reference methods for compressor map speculation.
Funder
Fundamental Research Project in Chinese National Sciences and Technology Major Project