Effect of parasitic losses on the design optimization of inward flow radial supercritical CO2 turbines

Author:

Hoque Syed J1ORCID,Lanjewar Saurabh1,Kumar Pramod12

Affiliation:

1. Thermal Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India

2. Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science, Bangalore, India

Abstract

Inward flow radial (IFR) supercritical CO2 (sCO2) turbines are smaller in size and operate at considerably higher speeds in comparison to similar capacity conventional gas or steam turbines. The compact size and high speed of IFR turbines result in significant parasitic (leakage and disk friction) losses at the rotor backface. This paper presents CFD investigations to understand the mechanism of parasitic losses of IFR turbines in the kW to MW power scales. The first part of the paper presents a parametric study to quantify the effect of backface flowpath dimensions, rotor inlet radius, and rotational speed on the magnitude of parasitic losses. Subsequently, the paper proposes the implementation of a radial labyrinth seal on the rotor backface to curtail the parasitic losses. The second part of the paper examines how the power scale of the turbine and its design parameters, specific speed and velocity ratio, influence the magnitude of parasitic losses. The investigation reveals that parasitic losses cause an efficiency drop of 8%–15% for 100 kW and 4%–9% for 1 MW IFR sCO2 turbines. In addition, IFR turbines designed for low specific speeds and high velocity ratios result in notably higher parasitic losses, leading to a decline in turbine efficiency. Finally, the paper presents optimal turbine design parameters accounting for the parasitic losses to maximize turbine efficiency.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3