Aircraft auxiliary power unit performance assessment and remaining useful life evaluation for predictive maintenance

Author:

Wang Fangyuan1,Sun Jianzhong1ORCID,Liu Xinchao1,Liu Cui1

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

Modern commercial aircraft are usually configured with aircraft condition monitoring system to collect the operating data of subsystems and components, which can be used for airborne system health monitoring and predictive maintenance. This paper presents a baseline model based aircraft auxiliary power unit performance assessment and remaining useful life prediction method using aircraft condition monitoring system reports data, which can facilitate a cost-effective management of auxiliary power units of aircraft fleet. Firstly, the performance baseline model for auxiliary power unit is established using random forest method. Then a health index characterizing the performance degradation of in-service auxiliary power units is obtained based on the performance baseline model. Finally, the performance degradation trend is predicted using Bayesian dynamic linear model. To improve the prediction accuracy, four performance baseline models are established from the data of auxiliary power units under different operating conditions, among which an optimal model is determined. This data-driven baseline model can be used to quantify the performance degradation of auxiliary power units in service, and can be further used to evaluate the remaining useful life of auxiliary power unit using a Bayesian dynamic model. The developed approach is applied on a real data set from 22 auxiliary power units of a commercial aircraft fleet. The results show that the computed health index can effectively characterize the auxiliary power units performance degradation and the remaining useful life relative prediction errors are less than 4% when auxiliary power unit enters the rapid degradation stage. This would allow operators to accurately assess the performance degradation for the auxiliary power units and further proactively plan future maintenance events based on remaining useful life prediction.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3