Affiliation:
1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
Abstract
This research work studies the impact of the mixture concentration, spark timing, and ignition energy on the knock suppression of a two-stroke spark ignition aviation kerosene-fueled engine. Bench tests on different working conditions were conducted and some related data including in-cylinder pressure, cylinder head temperature, exhaust temperature, engine power, and torque were collected to analyze the influence of different control parameters on the knock characteristics of the engine. The results show that the knock can be suppressed at leaner and richer (than the stoichiometric) mixtures, and the richer mixture has a more obvious effect on suppressing knock. Retarding the ignition advanced angle will reduce the knock intensity but will make the exhausted temperature exceed and the output power decrease. The use of a rich mixture with early spark timing has a better effect on the knock suppression as compared to the use of a lean mixture with late spark timing. Reducing the ignition energy can suppress the knock slightly, but experimental results show that it is not an effective way.
Funder
Nanjing University of Aeronautics and Astronautics Ph.D. short-term visiting scholar project
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献