Development of an automated non-axisymmetric endwall contour design system for the rotor of a 1-stage research turbine – part 1: System design

Author:

Bergh Jonathan1ORCID,Snedden Glen2,Reddy Daya1

Affiliation:

1. CERECAM, University of Cape Town, Cape Town, South Africa

2. Aeronautical Systems, CSIR, Pretoria, South Africa

Abstract

Secondary flows are a well-known source of loss in turbomachinery flows, contributing up to 30% of the total aerodynamic blade row loss. With the increase in pressure on aero-engine manufacturers to produce lighter, more powerful and increasingly more efficient engines, the mitigation of the losses associated with secondary flow has become significantly more important than in the past. This is because the production of secondary flow is closely related to the amount of loading and hence the work output of a blade row, which then allows part counts and overall engine weight to be reduced. Similarly, higher efficiency engines demand larger engine pressure ratios which in turn lead to reduced blade passage heights in which secondary flows then dominate. This article discusses the design and application of an automated turbine non-axisymmetric endwall contour optimization procedure for the rotor of a low speed, 1-stage research turbine, which was used as part of a research program to determine the most effective objective functions for reducing turbine secondary flows. In order to produce as effective as possible designs, the optimization procedure was coupled to a computational fluid dynamics routine with as high a degree of fidelity as possible and an efficient global optimization scheme based on the so-called efficient global optimization algorithm. In order to compliment the requirements of the efficient global optimization approach, as well as offset some of the computational requirements of the computational fluid dynamics, the DACE metamodel was used as an underlying surrogate model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3