Affiliation:
1. Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
2. Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
Abstract
Depleting fossil fuel resources and the horrible environmental impacts due to burning fossil fuels emphasize the importance of using renewable energy resources such as geothermal and solar energies. This paper compares performance of CO2 transcritical cycle, organic Rankine cycle, and trilateral Rankine cycle using a low-temperature geothermal heat source. Thermodynamic analysis, exergetic analysis, economic analysis, and exergoeconomic analysis are applied for each of the aforementioned cycles. In addition, a sensitivity analysis is performed on the system, and the effects of geothermal heat source temperature, evaporator pinch point temperature, and turbine inlet pressure on the cycle's performance are evaluated. Finally, the systems are optimized in order to minimize product cost ratio and maximize exergetic efficiency by using the genetic algorithm. Results indicate that the maximum thermal efficiency is approximately 13.03% which belongs to organic Rankine cycle with R123 as working fluid. CO2 cycle has the maximum exergetic efficiency, equals to 46.13%. The minimum product cost ratio refers to the organic Rankine cycle with R245fa as working fluid. Moreover, sensitivity analysis shows that increasing geothermal heat source temperature results in higher output power, product cost ratio, and exergy destruction ratio in all cycles.
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献