Flow control in linear compressor cascades by inclusion of suction side dimples at varying locations

Author:

Lu Hua-wei1,Yang Yi1,Guo Shang2,Huang Yu-xuan1,Wang Hong1ORCID,Zhong Jing-jun1

Affiliation:

1. School of Naval Architecture & Ocean Engineering, Dalian Maritime University, Dalian, Liaoning, China

2. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian, Liaoning, China

Abstract

The flow characteristics and loss behavior over an array of parallel recessed dimples on a high turning linear compressor cascade have been investigated using the Reynolds-averaged Navier–Stokes approach. Steady simulations have been carried out at three dimple locations of 10–32%, 38–60%, 60–82% chord length of suction surface with the inlet Mach number of 0.7. Flow conditions were compared in exit loss coefficient, static pressure rise, streamline patterns, vortex structures, boundary layer parameters, and blade surface pressure between the smooth and the modified cascades. The results indicate that the dimples prior to the separation line report an overall enhancement in the aerodynamic performance in comparison to that of a smooth blade. Symmetric spanwise vortex, which energizes the boundary layer, can roll up inside the dimples. Therefore, the boundary layer with the higher momentum can bear the adverse pressure gradient, which will suppress the flow separation and associated losses. Three dimpled configurations can all eliminate the separation bubble on the suction side, but the dimples located at 60–82% chord length take the negative effect on the aerodynamic performance due to the more chaos condition in the corner separation region. The comparison results also indicate that the optimum location of dimples may exist in front of the separation bubble. Loss reduction of 18.8% and 10.8% can be achieved under the 10–32% c and 38–60% c dimple configurations, respectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3