Effects of unstable flow structures on energy transfer mechanism in a centrifugal pump

Author:

Liu Jia1,Zhang Fan1ORCID,Song Mengbin2,Zhu Lufeng1,Appiah Desmond1,Yuan Shouqi1

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang, China

2. LEO Group Co.Ltd., Taizhou, China

Abstract

To reveal the energy loss mechanism of the centrifugal pump, numerical simulation and experimental investigation are conducted to obtain the complex flow field of a single-stage centrifugal pump under various flow conditions. Particular emphasis is focused on the qualitative and quantitative analysis of the distribution and variation characteristics of irreversible loss in the pump model. The results show that the energy loss in the centrifugal pump mainly originates from the entropy generation caused by the turbulent dissipation and wall friction, which are typically generated in the volute and impeller domains. It is worth noticing that the energy loss in the volute is closely associated with non-uniform velocity distribution and the evolution of the shedding vortices from the impeller exit whilst the energy loss in the impeller are greatly affected by unstable flow phenomena such as flow separation, backflow, and jet-wake pattern. At the overload operating conditions, the wall entropy generation possesses a substantial influence on energy loss, which is mainly related to the wall shear stress. Meanwhile, the influence of the rotor-stator interaction and inflow impacting on the energy loss is enhanced with increasing flows. Finally, the omega method captured the vorticity structures near the tongue at partial flow conditions, thereby, revealing the relationship between the high magnitude of flow loss and the evolution of different scales of strong vorticity sheets.

Funder

National Natural Science Foundation of China

Yunnan Provincial Ranking the Top of the List for Science and Technology Projects of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3