Research on inner flow and energy characteristics of air ejector for liquid-ring vacuum pump

Author:

Jiang Lijie1ORCID,Zhang Renhui12ORCID,Chen Xuebing1ORCID,Guo Rong12

Affiliation:

1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China

2. Key Laboratory of Fluid Machinery and Systems, Gansu Province, Lanzhou University of Technology, Lanzhou 730050

Abstract

To analyze the complex flow characteristics, and reveal the mechanisms of energy transfer and hydraulic loss of the liquid-ring pump ejector. The numerical simulation and experiment were applied to analyze the complex shock wave structure, vortex evolution characteristics in the ejector and its influence on hydraulic performance, which provides a novelty reference for the optimization design of the ejector. Furthermore, novelty is expressed in the performance analysis of the ejector based on the performance of its matching liquid-ring pump. The results show that the λ-shock wave and Mach disk are formed inside the nozzle under the action of supersonic jet, and the triple point is formed as the incident shock wave, the reflected shock wave and the Mach disk intersect. The shock wave, as it propagates, changes from Mach reflection to regular reflection, and meanwhile, the position of triple point moves from the initial Mach disk to the new Mach disk. With the interaction of shock wave and jet boundary layer, the shock train is formed in the core region of the jet. The pressure, density and Mach number are oscillatory distributed in the shock wave region. There is a relatively large velocity gradient between the high speed primary flow and the low speed secondary flow near the outlet of nozzle, which induces the formation of opposite rotating vortices in the shear layer of the cylinder. With the evolution of the vortex, the high speed jet transfers energy through the cylindrical shear layer and is accompanied by the large hydraulic loss. The total entropy production of the ejector increases with the increase of primary flow pressure. The entropy production rate has a strong correlation with the vorticity magnitude.

Funder

Natural Science Foundation of Gansu Province

Industrial Support Plan for Colleges and Universities in Gansu Province of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3