Numerical investigation on combustion flow characteristics of a micro gas turbine swirl combustor with different protruded bluff body structures

Author:

Liu Hong1ORCID,Zeng Zhuoxiong1ORCID,Guo Kaifang1

Affiliation:

1. College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China

Abstract

A micro gas turbine swirl combustor with protruded bluff body is proposed. Compared with no bluff body, the protruded bluff body can significantly improve the combustion performance. When the bluff body height is 40 mm and the length is 30 mm, the average outlet NO emission is reduced by 14.43%, the pressure loss is decreased by 5.96%, and the outlet temperature distribution factor (OTDF) is dropped by 31.93%. The influence of different bluff body lengths (15–30 mm) and heights (10–50 mm) on the combustion flow are numerically analyzed further. The results show that the change of bluff body structure will affect the performance of combustor. In the range of 15–25 mm, with the increase of the bluff body length, the scope of central recirculation zone becomes narrower, velocity near the inlet and pressure loss decrease, the OTDF and field synergy angle β both become larger. When the bluff body length grows from 15 mm to 30 mm, the average outlet NO emission increases by 36.74%. The range of the central recirculation zone is gradually widen, and the average reaction rate grows up with the increase of bluff body height. The synergistic effect becomes better, and the heat transfer capacity is enhanced. When the bluff body height grows from 30 mm to 50 mm, the average outlet NO emission reduces from 35.84 ppm to 25.65 ppm.

Funder

Capacity Building Projects in Local Universities of Science and Technology Commission of Shanghai Municipality

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of vortex combustion flow in a chamber of guide ring coupling with swirl flow;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3