Full annulus numerical study of hot streaks propagation in a hydrogen-rich syngas-fired heavy duty axial turbine

Author:

Ioannou Eleni1,Sayma Abdulnaser I1

Affiliation:

1. School of Mathematics, Computer Science and Engineering, City University London, London, UK

Abstract

This paper presents a study of the effect of fuel composition on hot streaks propagation in a high-pressure turbine using a full annulus unsteady computational fluid dynamics analysis of the first two stages. Hot streaks result from the inherent non-uniformities of temperature profiles at the exit of the combustion chamber. Variations in composition arise from current challenges requiring gas turbines to adapt to fuel variations driven by the need to reduce CO2 emissions through the use of synthetic hydrogen-rich fuels (syngas) typically generated from the gasification of coal or solid waste. Syngas containing 80% hydrogen has been used in this study in a heavy duty gas turbine modified to accommodate the low calorific value fuel. Calculations were conducted on the baseline gas turbine originally designed for natural gas for the comparative study. Applying combustor representative hot streak profiles, analyses were performed for different hot streak distributions and locations. Analysis of results focused on the segregation of cold and hot fluid patterns and the effects of hot streaks on secondary flows and temperature re-distributions up to the second turbine stage. The hot flow pattern is affected by the fuel composition, resulting in more concentrated thermal wake shapes for syngas when compared to the reference natural gas fuel. In effect, the interaction with the secondary flow leads to more intense flow turning of the pressure side leg of the horseshoe vortex in the first rotor passage. The higher temperature levels in the case of syngas, in combination with the effect of the enhanced secondary flow, result in higher radial spread of the hot fluid that tends to migrate towards the blade hub and tip with the effects being obvious further downstream the first turbine stage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on NO reduction behavior within complex atmosphere during pilot ignition of low calorific gas;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2023-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3