Natural and forced convection heat transfer coefficients of various finned heat sinks for miniature electronic systems

Author:

Pua SW1,Ong KS1,Lai KC1,Naghavi MS2

Affiliation:

1. Depatment of Industrial Engineering, Universiti Tunku Abdul Rahman, Malaysia

2. Real State Division, UEM Edgenta Berhad, Malaysia

Abstract

Downward lighting light-emitting diodes require cooling with cylindrical fin heat sinks to be mounted on top and cooled under natural convection air cooling mode. Performance simulation would involve specification of the heat transfer coefficient. Numerous methods are available to simulate the performance of conventional plate fin heat sinks including computational fluid dynamics packages. It would be feasible to perform simulation based on conventional flat plate fin heat sinks. A cylindrical fin heat sinks could be simply treated as a plate fin heat sink, if we imagine it cut open and laid out horizontally. A theoretical model is proposed in this paper. An experimental investigation is conducted here to validate its accuracy. Convective heat transfer coefficients were experimentally determined for a horizontally and vertically inclined bare plate operating under natural and forced air cooling modes. In addition, a vertical plate fin heat sink and a vertical cylindrical fin heat sink under natural convection were investigated. Power inputs were kept from 5 to 40 W in order to keep operating temperatures below 100 ℃. Comparison of the experimental heat transfer coefficients and those obtained from well-known existing Nusselt number correlations show that agreement was poor for the bare plate but satisfactory for the plate and cylindrical fin heat sinks. Although they are within the generally accepted range, it would be advisable for actual measurements to be carried out in order to provide more accurate sizing for thermal measurements.

Funder

University Internal Fund

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3