Visual experiment and numerical simulation of cavitation instability in a high-speed inducer

Author:

Cui Baoling1ORCID,Chen Jie1

Affiliation:

1. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China

Abstract

Cavitation instabilities in a high-speed inducer at a design flow rate were investigated for different cavitation numbers in numerical simulations and visual experiments. On the basis of a shear stress transport k–ω turbulence model and Zwart–Gerber–Belamri cavitation model, the transient cavitating flow in a high-speed centrifugal pump with an inducer is numerically simulated using ANSYS-CFX 15.0 software. Visual experiments were carried out to capture the evolution of cavitating flow in the inducer by using a high-speed camera. The performance and cavitation characteristic curves from numerical simulation agree with those from experiment. With a decreasing cavitation number, the cavitation development in the high-speed inducer goes through incipient cavitation, developing cavitation, critical cavitation, and deteriorated cavitation and presents vortex cavitation, sheet cavitation, cloud cavitation, backflow cavitation, and a cavitation surge. The region having a high vapor volume fraction basically coincides with the region of low local pressure at the same cavitation number. The position of largish blade loading on the inducer changes with the development of cavitation. A cavitation surge as one type of cavitation instability appears in the inducer at lower cavitation numbers. The drop or rise of the head coefficient is affected by an increasing or decreasing cavitation area in the cycle of a cavitation surge.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3