Integrated simulation of photovoltaic micro-generation and domestic electricity demand: a one-minute resolution open-source model

Author:

Richardson Ian1,Thomson Murray1

Affiliation:

1. Centre for Renewable Energy Systems Technology, School of Electronic, Electrical and Systems Engineering, Loughborough University, UK

Abstract

Domestic photovoltaic generation can partially offset the electricity demand within an individual dwelling. The net demand may be readily estimated on an annual basis, but modelling its import and export with respect to time, is more complex. A key issue is that domestic electricity demand, particularly lighting, is significantly influenced by the outdoor light level, which of course also has a direct effect on photovoltaic generation. Thus, realistic time-step simulation of the net demand requires that the two components are modelled with respect to a common representation of the solar irradiance. This article presents the construction of an integrated model that provides data at a one-minute time resolution, built upon a fully validated high-resolution electricity demand model. An open-source software implementation of the integrated model in VBA within Microsoft Excel is described and is available for free download.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3