Numerical investigation of heat transfer and friction characteristics for turbulent flow in various corrugated tubes

Author:

Kaood A1ORCID,Abou-Deif T2,Eltahan H1,Yehia MA2,Khalil EE2

Affiliation:

1. Faculty of Engineering, Department of Mechanical Engineering, Fayoum University, Fayoum, Egypt

2. Faculty of Engineering, Department of Mechanical Engineering, Cairo University, Cairo, Egypt

Abstract

Thermal and hydraulic characteristics of turbulent water flow in a transverse corrugated tube with various corrugation direction (inward/outward) and corrugation shape (triangle, curve, rectangle, and trapezoid) are numerically investigated. The axisymmetric model of corrugated tubes with 10 mm inner diameter was investigated by changing the geometrical parameters for Reynolds number ranging from 5000 to 61,000 and constant heat flux boundary condition. Structured, nonuniform grid system is applied. Momentum, continuity, and energy equations were treated by means of a finite volume method using the SIMPLE scheme with the k–ε turbulence model and enhanced wall treatment. The results reveal that corrugation direction and corrugation shape have perceptible effects upon the heat transfer in the form of Nusselt number ( Nu) and pressure drop in the form of friction factor (ƒ). The average Nu for (inward) trapezoidal, rectangular, curved, and triangular corrugation shapes are 52.61%, 50.12%, 47.82%, and 44.96%, respectively, higher than the smooth tube. The average Nu for (outward) trapezoidal, curved, triangular, and rectangular corrugation shapes are 48.31%, 45.72%, 41.23%, and 40.94%, respectively, which are higher than a smooth tube. The results reveal that both inward/outward curved and triangular roughness shape have the superior performance evaluation criterion than rectangular and trapezoidal. Turbulence kinetic energy contour shows the increase in heat transfer performance for all corrugated tubes compared with a smooth tube. Inward corrugated tube provides the highest turbulence kinetic energy along the tube length and, consequently, the highest heat transfer. In addition, inward corrugated tubes provide the highest values and homogeneity of the velocity distribution along the core of tubes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3