Influences of slotted blade on performance and flow structure of a transonic axial compressor

Author:

Zhang Guochen1,Gao Tianyi1ORCID,Xu Zhihui1,Liu Pengcheng1,Zhang Chengfeng1

Affiliation:

1. Key Laboratory of Advanced Measurement and Test Technique for Aviation Propulsion System, School of Aero-Engine, Shenyang Aerospace University, Shenyang, China

Abstract

Main reason of compressor instability is boundary layer separation on the surface of blades. As one of flow control methods of the compressor, slotted blade has attracted many researchers’ attention because of its simple geometric structure and remarkable flow control effect. In order to evaluate its availability in the compressor, a type of convergent slot is designed to implement in a single-stage transonic axial compressor. Three configurations, i.e. rotor slot, stator slot and rotor-stator combined slot, are introduced to study the aerodynamic performance of compressor by numerical simulations. Furthermore, flow structures have been analyzed to explain the corresponding mechanism. The results show that overall stability margin of the compressor has been improved by flow control with slotted blade. Behavior of the rotor slot is better than that of the stator slot, but due to mass flow leakage in the slot, peak efficiency and chocking mass flow rate of the compressor are decreased by 1.18% and 3.8% respectively. The low momentum flow on pressure surface is sucked into the jet slot of stator blade, which improves the overall stability margin of 0.63%. The combined scheme with slotted rotor and slotted stator has obtained the best aerodynamic behavior with the increase of the overall stability margin of 2.83%. During the future research, main goal will be improvement of the compressor performance and extension of the mass flow rate range.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3