Effect of injection position on fuel spray and mixture preparation of a free-piston linear engine generator

Author:

Yuan Chenheng12ORCID,Li Jiahui3,He Liange2,He Yituan13

Affiliation:

1. College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing, China

2. Key Laboratory of Advanced Manufacture Technology for Automobile Parts (Ministry of Education), Chongqing University of Technology, Chongqing, China

3. School of Shipping and Naval Architecture, Chongqing Jiaotong University, Chongqing, China

Abstract

Fuel spray and mixing in linear engines is coupled by dynamics, combustion, and gas exchange, which differs from that in conventional engines. This work presents a system simulation to reveal the multi-process coupling effect of injection position on the fuel spray and mixing of a free piston linear diesel engine (FPLE). A full-cycle fuel spray model which couples with dynamic, combustion, and gas exchange is established to predict the coupled effect on mixture formation. The results indicate that the variable injection position changes the FPLE motion through multi-process coupling effect, resulting in different boundary conditions for fuel spray and mixing. Relatively large injection advance position leads to more residual gas, fast speed, intense turbulence, low gas pressure, and temperature at the moment of injection for mixture formation. The earlier fuel injection generally makes the longer spray penetration, smaller Sauter mean diameter of droplets, less fuel impingement, faster fuel evaporation rate, and more evaporated fuel mass. However, too early injection does not support the above results. Suggesting that in order to achieve homogeneous combustion mode, the large injection advance position injection schedule operation is a good choice for the FPLE due to its long ignition delay duration for fuel atomization, evaporation, and mixing.

Funder

Open Foundation of Key Laboratory of Advanced Manufacture Technology for Automobile Parts (Chongqing University of Technology), Ministry of Education

National Natural Science Foundation of China

Natural Science Foundation of Chongqing, China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3