An energy dispatch optimization for hybrid power ship system based on improved genetic algorithm

Author:

Wang Xinyu12ORCID,Zhu Hongyu1,Luo Xiaoyuan1,Chang Shaoping1,Guan Xinping3

Affiliation:

1. School of Electrical Engineering, Yanshan University, Qinhuangdao, China

2. Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing, China

3. School of Electronic and Electric Engineering, Shanghai Jiaotong University, Shanghai, China

Abstract

Due to the energy crisis and environmental deterioration, the emerging hybrid energy ship power system gradually replaced the traditional ship power system to keep environmental friendliness by employing the clean energy. However, the increase of energy storage and photovoltaic generation system brings enormous challenge to the optimization scheduling of hybrid energy ship power system. For this reason, an improved genetic algorithm-based optimal scheduling strategy for the hybrid energy ship power system is developed in this paper. Firstly, a novel hybrid energy ship power system model including the diesel generator, energy storage system, propulsion system, dynamic load and photovoltaic power generation device is constructed under the constraint of energy efficiency and greenhouse gases emissions. Considering the various navigation situations that the ship may encounter, such as photovoltaic power generation limit in extreme weather and diesel generator power change in load shedding, the corresponding scheduling optimization problems for the hybrid energy ship power system are established. Under the cost and gas emission constraints, an improved genetic algorithm-based scheduling optimization algorithm is proposed. By introducing the nonlinear parameter change model in crossover and mutation operator, the performance of improved genetic algorithm can be enhanced, such as convergence speed and global optimization ability. Compared with current works, the proposed scheduling optimization strategy can achieve the lowest cost while reducing environmental impacts. Finally, simulation results under the given navigation cases demonstrate the superiority of the proposed improved genetic algorithm-based scheduling optimization strategy.

Funder

National Nature Science Foundation of China

Science and Technology Plan of Hebei Education Department

Nature Science Foundation of Hebei Province

Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology

National Natural Science Foundation of China

Hebei Natural Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3