Numerical study on the three-dimensional flow of water film on the outer surface of the hollow stationary blade

Author:

Chen Yang1,Zhao Yujuan2,Zhang Xiaodan1,Cao Yanhao2,Li Liang2ORCID

Affiliation:

1. State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Dongfang Electric Corporation Dongfang Turbine Co., Ltd, Deyang, China

2. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China

Abstract

In order to figure out the influence of water film on the performance of the turbomachinery, understand the mechanism of the interaction between the high-speed airflow and the water film in turbomachinery, and provide a reference for the design of the subsequent experiments and hollow stationary blade water removal by heating. The commercial software FLUENT with the Eulerian Wall Films model is used to establish a solution method for simulating the flow of water film on the blade. The accuracy of the solution method is verified by comparing it with the results of the water film thickness experiment on the surface of the plate. The distribution of the water film on the outer surface of the vane as well as the influence of the water film on the mainstream field are numerically studied in the condition of the wet steam mainstream. The results show that the gradient of water film thickness on the pressure surface is relatively gentle and is along the radial direction. The gradient of water film thickness on the suction side is along the axial direction, and the value is larger; There is a V-shaped water film agglomeration area on the suction surface near the trailing edge where the water film thickness is greater than 45.7 μm; The top areas on both the suction side and pressure side produce a local water film agglomeration area with the dual effect of the secondary flow and the centrifugal force of the mainstream; The water film flow on the blade surface has little influence of the steam velocity and the speed of the mainstream. The increase of local pressure on the surface leads to an increase in the pressure of the adjacent mainstream areas.

Funder

State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3