Implementation of an acoustic stall detection system using near-field DIY pressure sensors

Author:

Corsini Alessandro12,Tortora Cecilia1,Feudo Sara1,Sheard Anthony G3,Ullucci Graziano2

Affiliation:

1. Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza University of Rome, Rome, Italy

2. SED Soluzioni per l'Energia e la Diagnostica, Ferentino (FR), Italy

3. AGS Consulting Llc, Atlanta, GA, USA

Abstract

In this paper, the use of DIY transducers is proposed to detect the pressure instabilities in a low-speed industrial axial fan. The authors aim is to detect rotating stall, a well-studied aerodynamic instability with a typical frequency that can be even lower than 10 Hz in low-speed industrial fans. Pressure transducers and piezoelectric sensors, such as microphones, in turbomachinery are used respectively in the near and far field as standard methods to perform time-resolved pressure measurements. Other classes of sensors, such as electret microphones, may be not suited for pressure measurements, especially in the ultrasound region because their cut-off frequency is about 20 Hz. In this study, the authors use a low-cost DIY technology, as alternative technology to stall detection, in comparison with a high precision piezoelectric sensor. The authors performed the pressure measurements using a dynamic transducer, a piezoresistive transducer, and a piezoelectric high sensitivity sensor that provides the measurement baseline. They implemented and set-up a measurement chain to identify the typical rotating stall pattern in low-speed axial fans. The results have been validated with respect to the state-of-the-art acoustic control techniques described in literature. The signals acquired using the two technologies are discussed using a combination of spectral and time-domain space reconstruction. The acoustic patterns obtained through the phase space reconstruction show that the DIY dynamic sensor is a good candidate solution for the rotating stall acoustic analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic Noise-Based Detection of Ferroresonance Events in Isolated Neutral Power Systems with Inductive Voltage Transformers;Sensors;2022-12-24

2. Editorial for Special Issue on Air Movement Fan Technology;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2016-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3