Advanced exergoeconomics of a steam power plant based on double-tier splitting of exergy destruction rates

Author:

Azubuike Uchenna G1,Njoku Howard O12ORCID,Ekechukwu Onyemaechi V1

Affiliation:

1. Department of Mechanical Engineering, University of Nigeria, Nsukka, Nigeria

2. Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, South Africa

Abstract

The advanced exergy and exergoeconomic analysis methodologies excel over their conventional counterparts by quantifying endogenous/exogenous exergy destruction rates and related costs that reveal the interactions among system components. By quantifying avoidable/unavoidable losses, they also reveal the potentials for component improvements that are practically achievable. These data are imperative for improving the cost-effectiveness of thermal systems. This paper presents the performances of a complex gas-fired power plant obtained via an advanced exergoeconomic analysis. The study advances existing studies by undertaking second-tier splitting of exergy destruction cost rates and associated investment cost rates to determine avoidable endogenous, unavoidable endogenous, avoidable exogenous, and unavoidable exogenous cost rates of the plant’s components. Component exergy destruction cost rates were found to be predominantly unavoidable, while most of the component investment cost rates were avoidable. Except for the low pressure heater 3, exergy destruction cost rates are endogenous in all the plant components, contributing 84% of overall cost rates. The proportions of exergy destruction cost rates and investment cost rates of the plant that are avoidable endogenous were 21% and 28% respectively, while the respective portions that are avoidable exogenous were 4% and 27%. Furthermore, it was shown that as much as 96.3% improvements in overall plant cost-effectiveness were achievable by eliminating avoidable endogenous exergy destruction cost rates and investment cost rates for major components of the plant.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3