Concentrated solar power: Recent developments and future challenges

Author:

Jelley Nick1,Smith Thomas2

Affiliation:

1. Department of Physics, University of Oxford, Oxford, UK

2. Department of Engineering Science, University of Oxford, Oxford, UK

Abstract

With the mass-manufacture and resulting low cost of silicon photovoltaics driven by Western government subsidy schemes and large-scale manufacturing, concentrated solar power for electricity generation is now at a turning point. The present cost of mirrors, lenses, support structure and plant for concentrated solar thermal power, and of the high-efficiency multi-junction cells, concentrating optics and two-axis tracking systems for concentrated photovoltaic power, has made operational concentrated solar power plants uncompetitive in most scenarios. This is changing the shape of optics as well as the materials from which they are constructed and the size of the components used. We aim to highlight the current research that is being carried out to reduce the cost of concentrated solar power and concentrate on the long-term potential for cost reduction of both concentrated solar power technologies. This review concentrates first on optical and thermodynamic fundamentals, and the technology choices imposed by real world materials. We then review the broad categories of optical concentrators. Developments in solar thermal power generation and heat and thermochemical storage are discussed before briefly describing recent research on thermoelectric generation. Recent trends in concentrated photovoltaics are summarised, and we conclude by considering the present situation for concentrated solar power in the context of mass-market silicon photovoltaics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3