Affiliation:
1. Turbomachinery Laboratory, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China
Abstract
Energy saving and emission reduction are very urgent for internal combustion engines. Turbocharging and exhaust gas recirculation technologies are very significant for emissions and fuel economy of internal combustion engines. Various after-treatment technologies in internal combustion engines have different requirements for exhaust gas recirculation rates. However, it is not clear how to choose turbocharging technologies for different exhaust gas recirculation requirements. This work has indicated the direction to the turbocharging strategy among the variable geometry, two-stage, and asymmetric twin-scroll turbocharging for different exhaust gas recirculation rates. In the paper, a test bench engine experiment was presented to validate the numerical models of the three diesel engines employed with the asymmetric twin-scroll turbine, two-stage turbine, and variable geometry turbine. On the basis of the numerical models, the turbocharging routes among the three turbocharging approaches under different requirements for EGR rates are studied, and the other significant performances of the three turbines were also discussed. The results show that there is an inflection point in the relative advantages of asymmetric, variable geometry, and two-stage turbocharged engines. At the full engine load, when the EGR rate is lower than 29%, the two-stage turbocharging technology has the best performances. However, when the exhaust gas recirculation rate is higher than 29%, the asymmetric twin-scroll turbocharging is the best choice and more appropriate for driving high exhaust gas recirculation rates. The work may offer guidelines to choose the most suitable turbocharging technology for engine engineers and manufacturers to achieve further improvements in engine energy and emissions.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献