Heat transfer comparison investigation of mist/steam two-phase flow and steam in a square smooth channel

Author:

Shi Xiaojun1ORCID,Jiang Guangwen12ORCID,Gao Jianmin12,Chen Guanwen12,Xu Liang12

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, P.R. China

2. Western China Institute of Quality Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China

Abstract

A small amount of fine water droplets is injected into steam to form mist/steam two-phase flow as the working fluid of internal cooling passages of blades and vanes, which is a promising cooling technology to replace compressed air cooling for next generation gas turbine. To simulate mist/steam flow in the internal cooling passage of gas turbine blade/vane, a smooth square channel was made by welding four stainless steel plates. The test channel employs a hydraulic diameter of 40 mm and a length of 420 mm. The thickness of the channel plate is 3 mm. The wall temperature distribution and averaged Nusselt number ratio of mist/steam and steam-only in this channel were numerically and experimentally investigated under the same test conditions for comparison. The effects of Reynolds number, wall heat flux and mass flow rate on the heat transfer performance have been analyzed. The results show that within the scope of allowable error the calculated results were acceptable to simulate the experiment subject with the numerical model in this work. Compared with steam-only, the variation trend of wall temperature distribution cooled by the mist/steam is different at the middle region of the test section. The heat transfer coefficient of mist/steam two-phase flow is significantly improved.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat transfer enhancement by mist/air two-phase flow in a high-temperature channel;International Journal of Heat and Mass Transfer;2022-09

2. Research of characteristics of the flow part of an aerothermopressor for gas turbine intercooling air;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2021-12-08

3. Experimental and numerical thermal performance analysis with exergy destruction on nanofluid flow in tube with double strip helical screw inserts;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2021-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3