Investigation on novel natural gas fueled homogeneous charge compression ignition engine based combined power and cooling system

Author:

Al-Mughanam Tawfiq1,Khaliq Abdul2ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, King Faisal University, Al-Ahsa, Saudi Arabia

2. Mechanical Engineering Department, College of Engineering at Yanbu, Taibah University, Yanbu, Saudi Arabia

Abstract

A significant part of energy of fuel supplied is lost in internal combustion engines in the form of atmospheric discharge of engine exhaust gases which are considered as a big source of engine inefficiency and formation of pollutant emissions. To address this issue, a bottoming cycle combining the transcritical CO2 (T-CO2) refrigeration cycle and the supercritical CO2 (sCO2) power cycle is employed, aiming to produce cooling for food preservation by utilizing the exhaust heat of homogeneous charge compression ignition (HCCI) engine powering the refrigerated truck. The operative variables and their effect on thermal and exergetic efficiency of HCCI engine and the combined system are investigated. At the base case operative conditions, the thermal and exergy efficiencies of natural gas fueled HCCI engine are improved significantly from 48.69% to 61.28% and from 41.14% to 42.79%, respectively, after employing the sCO2 powered T-CO2 refrigeration cycle. Promotion of equivalence ratio from 0.3 to 0.9 enhances the thermal and exergy efficiencies of HCCI engine from 47.44% to 49.54% and from 40.14% to 42.12%, respectively. Increasing of engine speed from 1400 r.p.m to 2200 r.p.m provides marginal improvement in HCCI engine efficiencies but the efficiencies of combined cycle are significantly improved from 57.67% to 65.18% and from 40.64% to 45.06%, respectively. Finally, exergy analysis applied to determine the sources of non-idealities within the system revealed that out 361 kW (100%) fuel exergy supplied to the system, HCCI engine destroys 93.31 kW (25.85%), catalytic convertor destroys15.49 kW (4.29%), and the in-cylinder heat transfer losses and system exhaust losses are found as 35.72 kW (9.91%) and 16.61 kW (4.61%), respectively.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3