Implementation of heat transfer techniques for an axial flux permanent magnet generator design

Author:

Kurt Erol1ORCID,Demirci Mustafa23ORCID,İlbaş Mustafa3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Technology Faculty, Gazi University, Ankara, Türkiye

2. Departmentof Mechanical Engineering, College of Engineering, University of South Florida, Tampa, FL, USA

3. Departmentof Energy Systems Engineering, Technology Faculty, Gazi University, Ankara, Türkiye

Abstract

Heat transfer problem is explored for a new-designed low power generator. A self-cooling mechanism of the generator is designed and implemented for the forced convection via a fan being on the generator rotor. In addition, air is naturally directed towards the lateral parts of the machine in air gaps between stator and rotors. The designed fan has 16 blades with 65 degrees. The CFD and experimental self-cooling analyses are performed to focus on the flow velocities and temperature measurements. In this study, it has been aimed to compare heat transfers by the natural convection and by the forced convection. For this reason, besides Rayleigh ( Ra), Nusselt ( Nu), Grashof ( Gr) and Reynolds ( Re) numbers, heat transfer terms on the small winding coil, which is important heat source for the generator, are calculated for natural and forced convection. They are also clarified experimentally and theoretically. The heat transfer at 300 rpm varies between 0.04 W and 0.30 W by time for forced convection and varies between 0.21 W and 0.30 W by time for natural convection, whereas, it increases up at 1000 rpm from 0.50 W to 1.49 W by time for forced convection and from 0.02 W to 0.45 W by time for natural convection. It is proven that the proposed cooling system operates efficiently and the proposed self-cooling method can be used for other axial flux machines, too.

Funder

TUBITAK

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3