A GA-LSSVM approach for predicting and controlling in screw chiller

Author:

Tian Chengcheng12,Xing Ziwen1,Pan Xi1ORCID,Wang Haojie1

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China

2. China Northwest Architecture Design and Research Institute Co. Ltd, Xi’an, China

Abstract

Performance of varying speed screw chiller is affected by many uncertainties. High precision prediction of its characteristics can guide the chiller to reach a better performance. This study presents an artificial intelligence model named least square support vector machine (LSSVM) with genetic algorithm (GA). Five parameters are predicted with the model, including COP, discharge pressure, suction temperature, suction pressure and cooling capacity. By comparing the simulation results with the test results, this model shows a high precision ability to predict the performance of the on-site chiller. Additionally, a newly control strategy is introduced to help the chiller with optimizing performance. Cooling capacity and superheat degree are separately used as input to train the model to control openness of EXV. The prediction of this control strategy process shows enough ability to predict openness of EXV. The results can be used to guide the chiller to reach better performances by adjusting the corresponding parameters.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3