Effect of casing aspiration on the tip leakage flow in the axial flow compressor cascade

Author:

Mao Xiaochen1,Liu Bo1,Tang Tianquan1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Shaanxi, PR China

Abstract

Tip leakage flow is usually responsible for the deterioration of compressor performance and stability. The current paper conducts numerical simulations on the impact of casing aspiration on the axial compressor cascade performance. Three aspiration schemes with different chordwise coverage are studied and analyzed. It is found that the cascade performance can be effectively improved by the appropriate casing aspiration, and the optimum aspiration scheme should cover the area including the onset point of tip leakage vortex and its vicinity. The control mechanisms are different for the aspiration schemes located at different blade chord ranges. For the aspiration scheme covering the onset point of tip leakage vortex, the improvement of the cascade performance is mainly due to that the starting point of the tip leakage vortex is shifted downstream. The original tip leakage vortex structure is divided into two parts if the aspiration scheme is located behind the onset point of tip leakage vortex and the final control effect is the combination of the influence from the two different parts of tip leakage vortex. Additionally, the casing aspiration redistributes the blade loading along the chord near blade tip. The results of these investigations may offer guidance for the appropriate design of aspiration scheme in the future updated compressors and the overall total pressure loss coefficient caused by aspiration slot should be considered in the design process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3