Unsteady behavior of corner separation in a compressor cascade: Large eddy simulation and experimental study

Author:

Gao F1,Zambonini G1,Boudet J1,Ottavy X1,Lu L2,Shao L1

Affiliation:

1. Laboratoire de Mécanique des Fluides et d’Acoustique, École Centrale de Lyon, Écully Cedex, France

2. School of Energy and Power Engineering, Beihang University, Beijing, China

Abstract

The present study carried out a pure large eddy simulation (LES) on a NACA65 linear compressor cascade (chord-based Reynolds number: 382 000), at an incidence angle of 4°. In this configuration, a corner separation at the juncture of the blade suction side and the end-wall is clearly observed experimentally. For the simulation, 852 CPUs are used in parallel and particular attention is paid to the inflow conditions, coupling LES with the calculation of the inlet boundary layer and associated velocity fluctuations. The shear-improved Smagorinsky model, which has been proved to be competent for turbomachines, is used in this study. Numerical results are carefully compared with pressure measurements, two-dimensional and stereo particle image velocimetry. LES is found to be superior to Reynolds-averaged Navier–Stokes approach in predicting the three-dimensional separated flows in the compressor cascade since pressure coefficients and losses are in very good agreement with the experiment. LES has been proven to simulate also the unsteady behavior of the separation. Finally, the experimental and numerical analysis of the inflow angle reveals high fluctuations of incidence upstream the leading edge of the blade near the end-wall, mostly associated with the incoming wall boundary layer.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3