Affiliation:
1. Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Abstract
Inclusion of porous structures in micro-channels enhances heat transfer rates in energy harvesting devices, which signifies as the working fluid becomes a nanofluid. The present study compares the thermal performance of CuO-water, TiO2-water and graphene-water nanofluids in a sinusoidal channel with a porous insert. The flow and heat transfer characteristics are simulated and the effects of volumetric fraction of nanofluids, Reynolds number ( Re), porous insert width, and its permeability on the flow and temperature fields are examined. The findings reveal that CuO-water nanofluid results in higher heat transfer rates than those of other nanofluids considered. Graphene-water nanofluid gives rise to lower performance than that of CuO-water nanofluid in terms of convection heat transfer despite the fact that graphene has higher thermal conductivity than CuO. In this case, a decrease in Nusselt number of as much as 6.34% is observed for CuO-water nanofluid among all the cases considered for the Reynolds number of 100. Increasing the permeability of the porous insert slightly enhances (∼0.24%) the average Nusselt number. The porous insert with a small width in the channel improves the heat transfer rates (2.25% increase in Nusselt number), i.e. the average Nusselt number reduces as the porous insert width increases.
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献