Thermal performance of nanofluids in a sinusoidal channel with embedded porous region

Author:

Ali Asif1,Shuja SZ1,Yilbas BS1ORCID

Affiliation:

1. Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Abstract

Inclusion of porous structures in micro-channels enhances heat transfer rates in energy harvesting devices, which signifies as the working fluid becomes a nanofluid. The present study compares the thermal performance of CuO-water, TiO2-water and graphene-water nanofluids in a sinusoidal channel with a porous insert. The flow and heat transfer characteristics are simulated and the effects of volumetric fraction of nanofluids, Reynolds number ( Re), porous insert width, and its permeability on the flow and temperature fields are examined. The findings reveal that CuO-water nanofluid results in higher heat transfer rates than those of other nanofluids considered. Graphene-water nanofluid gives rise to lower performance than that of CuO-water nanofluid in terms of convection heat transfer despite the fact that graphene has higher thermal conductivity than CuO. In this case, a decrease in Nusselt number of as much as 6.34% is observed for CuO-water nanofluid among all the cases considered for the Reynolds number of 100. Increasing the permeability of the porous insert slightly enhances (∼0.24%) the average Nusselt number. The porous insert with a small width in the channel improves the heat transfer rates (2.25% increase in Nusselt number), i.e. the average Nusselt number reduces as the porous insert width increases.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3