Experimental investigations on atomization characteristics of dual-orifice atomizers part II: Optimization method application

Author:

Fan Xiongjie123ORCID,Liu Cunxi123,Liu Fuqiang123,Zhao Qianpeng123,Yang Jinhu123ORCID,Xu Gang123

Affiliation:

1. Key Laboratory of Light-duty Gas-turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Innovation Academy for Light-duty Gas Turbine, Chinese Academy of Sciences, Beijing, China

Abstract

In this paper, the optimization method we obtained from dual-orifice atomizers previously is used to design and optimize new dual-orifice atomizers, whereas there are some differences between the new dual-orifice atomizer and dual-orifice atomizer used in Part I. For example, the mass flow is much smaller, there is an expansion angle at pilot nozzle to regulate pilot stage spray cone angle, and there is no recess length between main nozzle and pilot nozzle. Influences of structure parameters on mass flow, spray cone angle and liquid film fusion and separation are investigated, which are consistent with the expectation. Structure parameters that meet performance requirements of dual-orifice atomizer are analyzed. In addition, a new phenomenon has been found is that liquid film oscillation appears with the increase of Δ P, which should be avoided during the design and optimization of new atomizers. Pilot liquid film oscillation will influence the development of dual-orifice liquid film. Pilot swirling groove depth and expansion angle of pilot nozzle are key parameters that influence liquid film oscillation. Conclusions in this paper can be used to guide the design and optimization of new dual-orifice atomizers.

Funder

National Science and Technology Major Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3