Numerical and experimental investigation of the pressure fluctuation in a mixed-flow pump under low flow conditions

Author:

Shen Xi1,Zhang Desheng1ORCID,Xu Bin1,Zhao Ruijie1,Jin Yongxin1,Chen Jian1,Shi Weidong2

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China

2. School of Mechanical Engineering, Nantong University, Nantong, China

Abstract

In this paper, the large eddy simulation is utilized to simulate the flow field in a mixed-flow pump based on the standard Smagorinsky subgrid scale model, which is combined with the experiments to investigate pressure fluctuations under low flow conditions. The experimental results indicated that the amplitude of fluctuation at the impeller inlet is the highest, and increases with the reduction of the flow rate. The main frequencies of pressure fluctuation at the impeller inlet, impeller outlet, and vane inlet are blades passing frequency, while the main frequency at the vane outlet changes with the flow rate. The results of the simulation showed that the axial plane velocity at impeller inlet undergoes little change under 0.8 Qopt. In case of 0.4 Qopt, however, the flow field at impeller inlet becomes complicated with the axial plane velocity changing significantly. The flow separation is generated at the leading edge of the suction surface at t* = 0.0416 under 0.4 Qopt, which is caused by the increase of the incidence angle and the influence of the tip leakage flow. When the impeller rotates from t* = 0.0416 to t* = 0.1249, the flow separation intensified and the swirling strength of the separation vortex is gradually increased, leading to the reduction of the static pressure, the rise of adverse pressure gradient, and the generation of backflow. The static pressure at the leading edge of the impeller recovers gradually until the backflow is reached. In addition, the flow separation is the main reason for the intensification of the pressure fluctuation.

Funder

Prospective Joint Research Project of Jiangsu Province

Primary Research & Development Plan of Jiangsu Province

333Project of Jiangsu Province

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3