Effect of hybrid breakup modelling on flame lift-off length and soot predictions

Author:

Qi Wenliang1,Yang Zilong2,Ming Pingjian1,Zhang Wenping1,Jia Ming3,Wang Wenhui1

Affiliation:

1. College of Power and Energy engineering, Harbin Engineering University, Harbin, China

2. China Ship Research and Development Academy, Beijing, China

3. School of Energy and Power Engineering, Dalian University of Technology, Dalian, China

Abstract

An improved droplet breakup model coupled with the effect of turbulence flow within the nozzle was implemented into the general transport equation analysis code to describe the flame lift-off length and predict the soot distribution. This model was first validated by the non-evaporating and evaporating spray experimental data. The computational results demonstrate that the breakup model is capable of predicted spray penetration and liquid length with reasonable accuracy. The inclusion of turbulence enhanced the breakup model, increased the droplet breakup rate, decreased spray penetration for about 6–12% compared to the results of Kelvin-Helmholtz Rayleigh-Taylor (KH-RT) breakup model. Then, the model was applied to investigate the influence of ambient density, temperature, oxygen concentration and injection pressure on the flame lift-off length under typical diesel combustion conditions. The predictions showed good agreement with the experimental data. The result also indicated that the turbulence inside the nozzle strengthen the rate of breakup, resulting in more smaller droplets, leading to high evaporation rate and smaller vapour penetration lengths, thus decreases the lift-off length about 8%. Finally, the model was used to explore the soot distribution. The overall trend of soot with the variations in injection pressure was well reproduced by the breakup model. It was found that the droplet with faster velocity under high injection pressure, this could lead to larger lift-off length, which will play a significant role for the fuel–air mixing process and thus cause a decrease in soot in the fuel jet. Results further indicated that the turbulence term can decrease the soot mass about 5–9% by improved the droplet breakup process.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3