Variations of cooling performance on turbine vanes due to incipient particle deposition

Author:

Yang Xing1,Hao Zihan1,Feng Zhenping1

Affiliation:

1. Institute of Turbomachinery, Xi’an Jiaotong University, Xi’an, China

Abstract

In this paper, to demonstrate the deposition effects on cooling performance, the changing patterns of film cooling due to particle deposition are numerically investigated on a turbine vane that is cooled by an array of film-holes. The uniqueness of this work is addressing the cooling performance at an early deposition stage, in which deposits are relatively slight. The build-ups of the deposits are simulated by moving grid nodes on the wall boundaries. Results show that in addition to particle velocity, the blowing conditions and wall temperatures are two important factors to determine the deposition patterns. Increasing coolant-to-mainstream mass flow ratios and lowering wall temperatures can help inhibit the growth of deposits. In addition, the modifications of the vane profile due to incipient deposition are completely different from those with excessive deposition. Although flow fields are less sensitive to the early-stage deposits in the subsonic vane passage, cooling effectiveness is significantly changed and the changes are linked to the mass flow ratios. Compared to the cooling performance from a non-deposition case, reduced cooling performance due to incipient deposition is found at a low mass flow ratio of 1.09%, while cooling performance is improved at moderate and high mass flow ratios of 1.64% and 2.06%.

Funder

National Postdoctoral Program for Innovative Talents of China

National Nature Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3