Unsteady flow characteristics and cavitation prediction in the double-suction centrifugal pump using a novel approach

Author:

Pei Ji1,Osman Majeed Koranteng12,Wang Wenjie1ORCID,Yuan Jianping1,Yin Tingyun1,Appiah Desmond1

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

2. Mechanical Engineering Department, Wa Polytechnic, Wa, Upper West, Ghana

Abstract

The recent advances in centrifugal pump design do not only require a better suction performance but also there have been attempts to reduce design time at a lower cost. The traditional trial-and-error optimization design method, however, depends on the designer's experience, which requires longer cycles. This is because the computational process of calculating the net positive suction head required (NPSHr) involves several calculation steps and this consumes a lot of computational time. An investigation was therefore carried out to test a novel NPSHr prediction method in a double-suction centrifugal pump using unsteady numerical simulations. In the new approach, a new boundary pair was introduced and an algorithm was used to estimate a good value for a static pressure value that correlates to a 3% drop in pump head to determine the critical cavitation point. Experiments were conducted to validate the hydraulic performance and the cavitation model. The NPSHr and the characteristic “sudden” head-drop were very well predicted by the novel approach in only three simulation steps. The internal flow analysis showed that for 0.6 Q d, the flow around the volute tongue was uneven at NPSH = 10.06 m, inducing flow separation and recirculation at the tongue region. Attached cavities were also observed around the suction ring in the spiral suction domain. The pressure fluctuations were analyzed also and the dominant frequency at the pump outlet and tongue region was the blade passing frequency. Consequently, the novel approach proved very robust and efficient in NPSHr prediction and would be a good alternative to shorten simulation time during cavitation optimization design process in centrifugal pumps.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3